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43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France

Received: 30 January 1998 / Received in final form: 10 April 1998 / Accepted: 25 May 1998

Abstract. Approximate expressions for the eigenvalue of a three-term recurrence relation with a general
form describing various physical problems are proposed. Their range of availability is examined by com-
parison with exact values for two different problems: the bound and continuum states of monoelectronic
diatomic ions and the Schrödinger equation describing molecular alignment in intense laser fields. For each
case, very good predictions have been obtained, which may be useful as initial values in iterative procedures
for deriving exact solutions.

PACS. 31. Electronic structure of atoms, molecules and their ions: theory

1 Introduction

Many of the functions of interest in mathematical physics
obey second order recurrence relations. For instance, when
expanding the eigenfunctions of the Schrödinger equation
of the one-electron two-centre problem as series of con-
veniently chosen basis functions, the corresponding ex-
pansion coefficients can be linked together by three-term
recurrence relations involving the required eigenvalues.
Several techniques are available for calculating exactly
these eigenvalues, either numerically [1] or analytically by
means of infinite continued fractions [2–4] or by means of
a successive approximations procedure [3,5–8]. In a simi-
lar way, the Schrödinger equation proposed recently [9] to
describe alignment and trapping of molecules in intense
laser fields can also be reduced to a three-term recurrence
relation from which exact solutions are obtained.

In the present paper, we use the Hill-determinant tech-
nique [10,11] to set up a scheme that yields analytic ap-
proximate expressions for the eigenvalues of a three-term
recurrence relation which can be very easily determined
by use of a symbolic algebraic manipulation language.

These expressions can be used successfully to calcu-
late accurate initial values of the eigenvalues E and of
their derivatives ∂E/∂x with respect to some variable
x, requisite to initiate the numerical iterative processes
[1,12] by which to obtain exact values.

The process by which to derive approximate expres-
sions for the eigenvalue E entering a three-term recur-
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rence relation is presented in some details in Section 2.
In Section 3 these general formulas are applied to the
specific case of monoelectronic diatomic ions, for bound
and continuum states. In Section 4, approximations of the
eigenenergy and squared alignment cosine are displayed
for the problem of molecular alignment in intense laser
fields. Some illustrative numerical results are presented
in Section 5. In addition a lot of useful analytical formu-
las concerning eigensolutions for monoelectronic diatomic
ions expanded on the various basis sets proposed in liter-
ature, are gathered in Tables 1 to 3.

2 Approximate analytic expressions
for eigenvalues and their derivatives

2.1 Eigenvalues

Let us consider a three-term recurrence relation written
as

αka(k + 1) + (E + hk)a(k) + βka(k − 1) = 0 (1)

with k ≥ 0, αk 6= 0 and the boundary condition a(−1) =
0. E is the required eigenvalue. αk, hk and βk are known
coefficients for a given problem. Setting either

a(0) = F (0); a(−1) = F (−1) = 0

and a(k) = F (k)/
k−1∏
t=0

αt (2a)
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E
(3)
k = Qk+2(2, 2)Qk+1(1, 1)

[
Pk+3(3, 3) + Pk+2(2, 1) − Pk+1(1, 1) + Pk(1, 1)

]
−Qk(1, 1)Qk−1(1, 2)

[
Pk+1(1, 1)− Pk(1, 1) + Pk−1(0, 1) + Pk−2(1, 3)

]
−Q2

k+1(1, 1)
[
3P(k+2)(2, 2)− 2Pk+1(1, 1) + 3Pk(1, 1)

]
+Q2

k(1, 1)
[
3Pk+1(1, 1) − 2Pk(1, 1) + 3Pk−1(1, 2)

]
−Qk+1(1, 1)Qk(1, 1)

[
Pk+2(2, 2)− 2Pk+1(1, 1)+2Pk(1, 1)−Pk−1(1, 2)

]
+ Sk+1(1, 1)Pk(1, 1)

[
2Pk+2(2, 2) + Pk(1, 1)

]
− Sk(1, 1)Pk+1(1, 1)

[
Pk+1(1, 1) + 2Pk−1(1, 2)

]
(12)

or

a(0) = G(0); a(−1) = G(−1) = 0

and a(k) = G(k)/
k∏
t=1

βt. (2b)

We get the following recurrence relations with a simplified
form either

F (k + 1) + (E + hk)F (k) + fkF (k − 1) = 0 (3a)

or

fk+1G(k + 1) + (E + hk)G(k) +G(k − 1) = 0 (3b)

with fk = αk−1βk. The coefficients hk and fk are assumed
to be real.

Such relations (3) are ordinary handled by a method
of continued fractions or by means of successive approxi-
mations procedure. Nevertheless, as pointed out in refer-
ence [10], these recurrence relations can be looked upon as
infinite sets of linear equations in F (k) or in G(k). For the
self-consistency of these sets, the determinant D(E) of the
matrix of the coefficients of F (k) or G(k) must be zero:
D(E) = 0, and the corresponding roots are the required
eigenvalues E.

As done for the infinite-dimensional characteristic Hill
determinant, approximate expressions E

(n)
k for the eigen-

value E can be obtained by expanding the finite dimen-
sional (2n + 1) × (2n + 1) determinant D2n+1(E). The
zero-order approximation (n = 0) is given by

E
(0)
k = −hk. (4)

The first order approximation E
(1)
k is obtained from the

expansion of D3(E) conveniently written around the cen-

tral element E
(1)
k [10,11]. From relation (3a) with k ≥ 1,

D3(E) has the following form

D3(E) =

∣∣∣∣∣∣∣
E

(0)
k + hk−1 1 0

fk E
(1)
k 1

0 fk+1 E
(0)
k + hk+1

∣∣∣∣∣∣∣ . (5)

The condition D3(E) = 0 leads to

E
(1)
k = Pk+1(1, 1)− Pk(1, 1) (6)

where for simplicity we have set:

Pk(s, t) = fk/gk(s, t),

Pk(s, t) = 0 for s > k, (7)

with

gk(s, t) = hk−s+t − hk−s. (8)

To proceed to a nth order of approximation, we consider
the expansion of the D2n+1(E) (with k ≥ n) about the

central element E
(n)
k while all the other Ek appearing on

the diagonal are set equal to
n−1∑
i=0

E
(i)
k . Proceeding in this

way and using the symbolic algebraic manipulation lan-
guage MAPLE approximate analytic expression for the
eigenvalues E have been determined in the present work
up to the third order.

The eigenvalue E can be written as

E = E
(0)
k +E

(1)
k +E

(2)
k +E

(3)
k (9)

where E
(0)
k and E

(1)
k are given by equations (4, 6), respec-

tively. The expression for E
(2)
k is

E
(2)
k = Qk+1(1, 1)[Pk+2(2, 2)− Pk+1(1, 1) + Pk(1, 1)]

−Qk(1, 1)[Pk+1(1, 1)− Pk(1, 1) + Pk−1(1, 2)]
(10)

with

Qk(s, t) = Pk(s, t)/gk(s, t)

Qk(s, t) = 0 for s > k. (11)

The expression for E
(3)
k is given by

see equation (12) above

with

Sk(s, t) = Qk(s, t)/gk(s, t)

Sk(s, t) = 0 for s > k. (13)

It is obvious that the recurrence relation (3b) provides
exactly the same expressions for the Ek.

2.2 Derivatives of the eigenvalues

In some physical problems [1,12] one must calculate the
derivatives of the eigenvalue Ek with respect to a variable
x of which the functions hk and fk are dependent. This is
done in a straightforward way by differentiating equations
(4, 6–13) with respect to x.
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E
(3)
k =

K`+1

2(`+ 1)

[
K`+3K`+2

12(2`+ 3)
+

K2
`+2

8(`+ 1)
−

(7`+ 10)

4(2`+ 3)(`+ 1)
K`+2K`+1 +

(3`2 + 2`− 3)

4(2`+ 3)(`+ 1)`
K`+2K`+

K2
`+1

(`+ 1)
−

(2`2 + 1)

2(`+ 1)`2
K`+1K`

]

−
K`

2`

[
K`−2K`−1

12(2` − 1)
+
K2
`−1

8`
−

(7`− 3)

4(2`− 1)`
K`−1K`+

(3`2+4`−2)

4(2`−1)(`+1)`
K`−1K`+1 +

K2
`

`
−

(2`2 + 4`+ 3)

2`(`+ 1)2
K`+1K`

]
(19)

3 Application to the one-electron two-centre
problem

Within the Born-Oppenheimer approximation, the
Schrödinger equation for the one-electron two-centre prob-
lem with the fixed nuclear charges ZA and ZB is sep-
arable when introducing prolate spheroidal coordinates:
−1 ≤ µ ≤ 1, 1 ≤ λ < +∞ and 0 ≤ φ ≤ 2π. The corre-
sponding diatomic eigenfunctions of the bound and con-
tinuous states can be factorized and written as:

Ψ(r) = N exp(imφ)M(µ)Λ(λ)

where N is the normalization constant.
The functions M(µ) and Λ(λ) are solutions of the fol-

lowing pair of ordinary differential equations, “angular”
and “radial”, respectively[

∂

∂µ
(1− µ2)

∂

∂µ
−

m2

(1− µ2)
+p2µ2−R1µ−A

]
M(µ) = 0

(14)

and[
∂

∂λ
(λ2 − 1)

∂

∂λ
−

m2

(λ2 − 1)
−p2λ2+R2λ+A

]
Λ(λ) = 0.

(15)

For the bound states the angular functions M(µ) and the
radial functions Λ(λ) can be expanded on appropriate sets
of basis functions: Wilson [13], Baber and Hassé [2], or
Power [4] basis for M(µ), and Hylleraas [14] or Jaffé [15]
basis for Λ(λ). For the continuum statesM(µ) is expanded
on the associated Legendre function Pmm+k(µ) with µ ≥ 0
[16]. These expansions lead to solving three-term recur-
rence relations satisfied by expansion coefficients of the
type investigated in the preceding section (Eqs. (3)). The
required separation constant A is contained in the eigen-
value E.

In Table 1, expansions for the bound states angular
M(µ) and radial Λ(λ) eigenfunctions are recalled, together
with the expressions for the corresponding eigenvalues E.
For the continuum wavefunctions only the angular func-
tion M(µ) can be considered. In Table 1, Pmm+k(µ) is the
associated Legendre polynomial of the first kind, Φ(α, β; y)
the confluent hypergeometric function and Lmk (y) the or-
thogonal Laguerre polynomial [17]. p is the energy param-
eter (ε = −2p2/R2) in terms of the internuclear distance
R, R1 = R(ZA−ZB) and R2 = R(ZA+ZB). For the con-
tinuum, the nonnegative energy is defined by c2 = −p2

[18]. The three-term recurrence relations obtained for
these different basis sets are listed in Table 2, together

with the asymptotic behaviour of the dominant a(1)(k)
and subdominant a(2)(k) corresponding solutions, worked
out by the method described in reference [19]. The corre-
sponding expressions for the functions fk, gk(s, t) (Eq. (8))
and hk are given in Table 3. Since the variation ∂k is ex-
ponentially small in p, Power [4] sets ∂k = 0 when calcu-
lating the angular eigenvalues Ek, consequently Power’s
recurrence relation and Power’s functions fk, gk(s, t) and
hk are given after setting ∂k = 0.

3.1 Approximate analytic expressions for the
eigenvalue E deduced from the angular equation

In the case where the angular function M(µ) is expressed
in accordance with the model proposed by Baber and
Hassé [2] for the bound states, or by Rankin and Thorson
[16] for the continuum, the functions Pk(s, t), Qk(s, t) and
Sk(s, t) (Eqs. (7, 11, 13), respectively) take the general

form p2

[
χ
k

(
R1

2p

)2

− ρk

]
or c2

[
χ
k

(
R1

2p

)2

+ ρk

]
and

provide terms in p2j or c2j with j = 1 for E
(1)
k (Eq. (6)),

j = 2 for E
(2)
k (Eq. (10)), and with j = 3 for E

(3)
k (Eq.

(12)). The contracted expression Ek (Eq. (9)) provides an
approximate analytic expression suitable for p or c small
and easily computed with an algebraic manipulation lan-
guage such as MAPLE. We obtain:

E
(0)
k = −`(`+ 1) (16)

E
(1)
k = K`+1 −K` (17)

E
(2)
k =

K`+1

4(`+ 1)
[K`+2 − 2K`+1 −K`/`]

−
K`

4`
[K`−1 − 2K` +K`+1/(`+ 1)] (18)

see equation (19) above

with ` = m+ k for the bound states, and

for t > 0

K`+t = 4p2 ((`+ t)2−m2)

(4(`+t)2−1)(2`+t+1)

((
R1

2p

)2

−(`+ t)2

)
,

(20a)

and for t ≤ 0

K`+t = 4p2 ((`+ t)2−m2)

(4(`+t)2−1)(2`+t)

((
R1

2p

)2

−(`+ t)2

)
.

(20b)
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Table 1. Expressions for the diatomic eigenfunctions and eigenvalues for some basis.

Basis Diatomic eigenfunctions* Eigenvalues E

Angular
bound states
M(µ)

Baber
Hassé

exp(−pµ)
∑
k=0 a(k)Pmm+k(µ) A− p2

Wilson exp(−pµ)(1− µ2)m/2
∑
k=0(−1)ka(k)(1 + µ)k A− p2 −R1 + (m+ 1)(m+ 2p)

Power exp(−p(1 + µ))(1− µ2)m/2

×
∑
k=0 a(k)Φ(−(k+ δk),m+ 1; 2p(1 + µ))

A− p2 −R1 + (m+ 1)(2p− 1 +R1/2p)

Angular
continuous
states M(µ)

Rankin
Thorson

exp(−icµ)
∑
k=0 a(k)Pmm+k(µ) A+ c2

Radial bound
states Λ(λ)

Hylleraas exp(−p(λ−1))(λ2−1)m/2
∑
k=0 a(k)Lmk (2p(λ−1)) A− p2 +R2 − (m+ 1)(2p+ 1−R2/2p)

Jaffé exp(−pλ)(λ2 − 1)m/2(λ+ 1)−m−1+R2/2p

×
∑
k=0 a(k)

[
λ− 1

λ+ 1

]k A− p2 +R2 − (m+ 1)(2p+ 1−R2/2p)

*m is a positive integer.

For the continuum p2 must be replaced by (−c2) in the
above expressions. As expected, formulas (16) to (19) re-
main unchanged when changing ` into −(`+1). Of course,

the sum E
(0)
k +E

(1)
k +E

(2)
k gives the known expressions of

Abramov and Slavyanov [7] up to p4, of Abramov et al.
[8] up to c4 and of Baber and Hassé [2] up to p4 for the

case ` = m = 0, and the sum E
(0)
k + E

(1)
k + E

(2)
k + E

(3)
k

reproduces the first terms of the results given by Flammer
[3] in the particular case R = 0 (R1 = 0, R2 = 0).

For the derivatives E′k with respect to R we obtain

terms in pj or cj with j = 1 from E′
(1)
k , with j = 3 from

E′
(2)
k , and with j = 5 from E′

(3)
k . We can write

E′
(0)
k = 0 (21a)

E′
(1)
k = K ′`+1 −K

′
` +O(p2) (21b)

E′
(2)
k =

K ′`+1

4(`+ 1)
[K`+2 − 2K`+1 −K`/`]

+
K`+1

4(`+ 1)
[K ′`+2 − 2K ′`+1 −K

′
`/`]

−
K ′`

4`
[K`−1 − 2K` −K`+1/(`+ 1)]

−
K`

4`
[K ′`−1 − 2K ′` −K

′
`+1/(`+ 1)] +O(p3)

(21c)

and consequently

∂Ek

∂R
= 4p

[
((`+ 1)2 −m2)

(4(`+ 1)2 − 1)(2`+ 2)

[
R1

2p
(ZA − ZB)

− 2(`+ 1)2 ∂p

∂R

]
−

(`2 −m2)

(4`2 − 1)(2`+ 1)

×

[
R1

2p
(ZA − ZB)− 2`2

∂p

∂R

]]
+O(p2). (22)

3.2 Asymptotic analytic expressions for the eigenvalue
E deduced from the radial equation

The radial eigenfunction Λ(λ) expanded in accordance
with either the Hylleraas [14] or the Jaffé [15] basis func-
tions leads to the same simplified recurrence relation (see
Tab. 3). Since the corresponding function gk(s, t) depends
on p, the expression for Ek (Eq. (9)) provides an analytic
approximation when p and R2 are large, in an asymp-
totic form obtained when expanding the functions Pk(s, t),
Qk(s, t) and Sk(s, t) (Eqs. (7, 11, 13), respectively) as Tay-
lor’s series in 1/p, without deriving the (R2/2p) terms.

We obtain the following asymptotic expansion directly
from equations (6, 10, 12), by use of the language MAPLE:

Ek = −hk +
6∑
t=1

bt/p
t +O(1/p7) (23)
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Table 2. Recurrence relations and asymptotic behaviour of the solutions∗.

Basis Recurrence relations and solutions a(1)(k) et a(2)(k)

Baber
Hassé

(2m+ k + 1)

(2m+ 2k + 3)
(2p(m+ k + 1) +R1)a(k+ 1) + (E + (m+ k)(m+ k + 1))a(k)

+
k

(2m+ 2k − 1)
(R1 − 2p(m+ k))a(k − 1) = 0

a(1)(k) ≈ (−1/p)(m+k)(m+ k)(−m−1/2−R1/2p)(m+ k)!

a(2)(k) ≈ p(m+k)(m+ k)(−m−1/2−R1/2p)/(m+ k)!

Wilson

2(k + 1)(m+ k + 1)a(k + 1) + (E + k(2m+ k + 4p + 1))a(k) + (2p(m+ k)−R1)a(k− 1) = 0

a(1)(k) ≈ (−1/2)kk(m−1)

a(2)(k) ≈ (−2p)kk(−m−1−R1/2p)/k!

Power

(k + 1)(k + 1−
R1

2p
)a(k + 1) + (E − 2k(m+ k + 1− 2p−

R1

2p
))a(k) + (m+ k)(m+ k −

R1

2p
)a(k − 1) = 0

|a(1)(k)| = |a(2)(k)|

a(k) ≈ km−3/4 exp[±i4(pk)1/2]

Rankin
Thorson

(2m+ k + 1)

(2m+ 2k + 3)
(2ic(m + k + 1) +R1)a(k + 1) + (E + (m+ k)(m+ k + 1))a(k)

+
k

(2m+ 2k − 1)
(R1 − 2ic(m+ k))a(k − 1) = 0

a(1)(k) ≈ (1/c)(m+k)(m+ k)(−m−1/2)(m+ k)! exp[i((m+ k)
π

2
+
R1

2c
Ln(m+ k)]

a(2)(k) ≈ c(m+k)(m+ k)(−m−1/2) 1

(m+ k)!
exp[i((m + k)

π

2
+
R1

2c
Ln(m+ k)]

Hylleraas

(m+ k + 1)(k + 1−
R2

2p
)a(k+ 1) + (E − 2k(m+ k + 2p+ 1−

R2

2p
))a(k) + k(m+ k −

R2

2p
)a(k− 1) = 0

a(1)(k) ≈ k−1/4 exp[2((4p+ 1))k)1/2]

a(2)(k) ≈ k−1/4 exp[−2((4p+ 1))k)1/2]

Jaffé

(m+ k + 1)(k + 1)a(k + 1) + (E − 2k(m+ k + 2p+ 1−
R2

2p
))a(k) + (k −

R2

2p
)(m+ k −

R2

2p
)a(k − 1) = 0

a(1)(k) ≈ k(−3/4−R2/2p) exp[4(pk)1/2]

a(2)(k) ≈ k(−3/4−R2/2p) exp[−4(pk)1/2]

∗ a(1)(k) and a(2)(k) are the dominant and subdominant solutions respectively: |a(1)(k)| > |a(2)(k)|.

where

b1 =
1

4
[fk − fk+1]

b2 =
1

4
[(σk + 1)fk+1 − σkfk]

b3 =
1

128

[
−fk+2fk+1 + 2f2

k+1 − 32(σk + 1)2fk+1

−2f2
k + fkfk−1 + 32σ2

kfk
]

b4 =
1

128

[
(3σk + 7/2)fk+2fk+1 − 6(σk + 1)f2

k+1

+ 2fk+1fk + 32(σk + 1)3fk+1 + 6σkf
2
k

−(3σk − 1/2)fkfk−1 − 32σ3
kfk
]

with

σk = 1/2[m+ 2k −R2/2p]. (24)
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Table 3. Expressions for the functions fk, gk(s, t) and hk.

Basis fk gk(s, t) hk

Baber
Hassé

4p2((m+ k)2 −m2) t(2m+ 2k − 2s+ t+ 1) (m+ k)(m+ k + 1)

×[(R1
2p

)2−(m+k)2]/(4(m+k)2−1)

Wilson k(m+ k)(4p(m+ k)− 2R1) t(2m+ 2k − 2s+ t+ 4p+ 1) k(2m+ k + 4p+ 1)

Power k(m+ k)(k − R1
2p )(m+ k − R1

2p ) −2t(m+ 2k − 2s+ t+ 1− 2p− R1
2p ) −2k(m+ k + 1− 2p− R1

2p )

Rankin
Thorson

4c2((m+ k)2 −m2)[(R1
2c )2 t(2m+ 2k − 2s+ t+ 1) (m+ k)(m+ k + 1)

+(m+ k)2]/(4(m + k)2 − 1))

Hylleraas
Jaffé k(m+ k)(k − R2

2p )(m+ k − R2
2p ) −2t(m+ 2k − 2s+ t+ 1 + 2p− R2

2p ) −2k(m+ k + 1 + 2p− R2
2p )

∂Ek
∂R

= 4k
∂p

∂R
−
k

p

(
ZA + ZB −

R2

p

∂p

∂R

)
+

1

4p2

[
(k + 1)(m+ k + 1)

(
k + 1−

R2

2p

)(
m+ k + 1−

R2

2p

)
− k(m+ k)

(
k −

R2

2p

)(
m+ k −

R2

2p

)]
∂p

∂R

+
1

8p2

[
1

2

(
ZA + ZB −

R2

p

∂p

∂R

)[
(k + 1)(m+ k + 1)

(
m+ 2k + 2−

R2

p

)
− k(m+ k)

(
m+ 2k −

R2

p

)]]
+O(1/p3).

(26)

The expressions for the coefficients b5 and b6 are given in
Appendix.

E
(1)
k provides all the terms up to 1/p2, the sum

E
(1)
k + E

(2)
k provides all the terms up to 1/p4 and the

sum E
(1)
k +E

(2)
k +E

(3)
k provides all the terms up to 1/p6.

Taking into account the expressions for the functions
fk, gk(s, t) and hk corresponding to the Power [4] and
Hylleraas [14] or Jaffé [15] basis (see Tab. 3), it is obvious
that Power’s expression for Ek can be directly deduced
from relation (23) by changing R2 into (−R1) and p into
(−p). Expression (23) contains the results of Baber and
Hassé [2] given up to 1/p3 for k = 0 and R = 0, and up
to 1/p3 for m = 0 and R2 6= 0, those of Flammer [3] for
the spheroidal wavefunctions (R = 0) up to 1/p5, those of
Power [4] up to 1/p5 and those of Komarov et al. [6] up to
1/p4. Let us remark that when starting from the Wilson
[13] recurrence relation the asymptotic analytic expression
for the eigenvalues is exactly the same as Power’s equa-
tions (23) but contains terms only up to 1/p2.

For the derivatives E′k with respect to R we obtain:

∂Ek

∂R
= −

∂hk

∂R
+

1

4p

(
∂fk

∂R
−
∂fk+1

∂R

)
−

1

4p2
(fk − fk+1)

∂p

∂R
+O(1/p3) (25)

and consequently:

see equation (26) above.

4 Application to alignment and trapping
of molecules

According to the recent work of Friedrich and Herschbach
[9] on alignment and trapping of molecules in intense laser
fields, let us consider a linear rotor subject to radiation
with electric field strength ε = ε0 cos(2πνt). For a perma-
nent dipole moment µ along the internuclear axis, when
taking into account the interaction potential Vα in terms
of the polarizability components α1 and α2, parallel and
perpendicular to the axis respectively, and the interaction
potential Vµ, the Schrödinger equation is

[BJ̃2 + Vα(θ) + Vµ(θ)]Ψ = EΨ (27)

where

Vµ(θ) = −µε cos θ,

Vα(θ) = −ε2(α1 cos2 θ + α2 sin2 θ)/2.

B is the rotational constant, J̃ the angular momentum
vector, θ the polar angle between the molecular axis and
the electric field direction and E the eigenenergy. When
neglecting the interaction Vµ the normalized eigenfunc-
tions Ψ(z, ϕ) for linear molecules (α1 > α2) satisfy the
following Schrödinger equation:[

∂

∂z
(1− z2)

∂

∂z
−

M2

1− z2
+ c2z2 + λJM

]
Ψ(z, ϕ) = 0

(28)
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where M (positive integer) is the projection of J̃ on the
internuclear axis and

z = cos θ,

ω1,2 = (α1,2ε
2
0/4B),

c2 = ω1 − ω2,

λJM = ω2 +E/B.

The expectation value of the squared alignment cosine is
evaluated from the Hellman-Feyman theorem (see Killing-
beck [20]):

〈cos2 θ〉 = −
∂λJM

∂c2
· (29)

4.1 Approximate analytic expression
for the eigenvalues λJM for c small

In the case of c small the function ΨJM can be expressed as
a Baber and Hassé eigenfunction (see Eq. (14) and Tab. 1)
with R1 = 0, p2 = c2 and A = −λJM :

ΨJM (z, ϕ) = exp(−iMϕ) exp(−cz)
∑
J=M

a(J)PMJ (z).

(30)

From equations (16) to (20) with ` = J an approximate
analytic expression for the eigenvalues is obtained:

λJM = −c2 − [E
(0)
JM +E

(1)
JM +E

(2)
JM +E

(3)
JM ]. (31)

Consequently for the first terms

λJM =
I∑
i=0

γ2ic
2i +O(c2I+2) (32a)

with

γ0 = J(J + 1)

γ2 = −
1

2

[
1−

(4M2 − 1)

(2J − 1)(2J + 3)

]
γ4 = −

1

2

[
((J + 1)2 −M2)((J + 2)2 −M2)

(2J + 1)(2J + 3)3(2J + 5)

−
((J − 1)2 −M2)(J2 −M2)

(2J − 3)(2J − 1)3(2J + 1)

]
γ6 = (4M2 − 1) (32b)

×

[
((J2 −M2)((J − 1)2 −M2)

(2J − 5)(2J − 3)(2J − 1)5(2J + 1)(2J + 3)

−
((J + 1)2 −M2)((J + 2)2 −M2)

(2J − 1)(2J + 1)(2J + 3)5(2J + 5)(2J + 7)

]
·

(32c)

Note that the coefficients γ2i are similar to the ones ob-
tained by Flammer [3] and given in Abramowitz and
Segun [21].

From relations (29, 32) one obtains

〈cos2 θ〉 = −
I∑
i=1

iγ2ic
2(i−1) +O(c2I). (33)

The previously published [9] limiting values (in O(c4)) of
eigenenergy and squared alignment cosine are contained
in equations (32, 33) respectively.

4.2 Asymptotic analytic expression for the eigenvalues
λJM for c large

In the case of c large the function ΨJM can be expressed
as a Power eigenfunction (see Eq. (14) and Tab. 1) with
R1 = 0, p2 = c2 and A = −λJM :

ΨJM (z, ϕ) = exp(−iMϕ) exp(−c(1 + z))

× (1− z2)M/2
∑
J=M

a(J)Φ(−J +M, M + 1; 2c(1 + z)).

(34)

An asymptotic expression, similar to the one for Power’s
functions (Eq. (23)) with M + k = J is obtained

λJM = −c2 + (2c− 1)(M + 1)−
3∑
i=0

E
(i)
JM (35)

which can be written as follows:

λJM = −c2 + 2c(2J + 1−M)

−
1

2

[
(2J + 1−M)2 + 1−M2

]
+

T∑
t=1

bt

(−c)t
+O

(
1

(−c)T+1

)
(36)

with for the first terms

b1 =
1

8
(2J + 1−M)

[
(2J + 1−M)2 + 1−M2

]
b2 = −

1

64

[
(2J + 1−M)2(5(2J + 1−M)2 + 10− 6M2)

+(M2 − 1)2
]
.

Further coefficients bt are obtained from relations (24) for
b3 and b4 and from relations (A.1, A.2) for b5 and b6, using

σk =
1

2
(M + 2k)

fk = k2(M + k)2

with k = J −M .
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Table 4. Approximate values Aµ and Aλ (see Sect. 5) of the separation constant A for some states of H+
2 and HeH2+.

H+
2 HeH2+

state R(a0) A Aµ Aλ A Aµ Aλ

1sσ(g) 1 0.24994624 0.24995051 0.24995286 0.75426151 0.75637554 0.75426339

10 20.133293 36.103906 20.133294 95.025720 742.87761 95.025710

100 2450.0101 7895597.3 2450.0101 9950.0025 26850773 9950.0028

3dπ(g) 1 − 5.9520464 − 5.9520464 − 28.173460 − 5.9043225 − 5.9043228 − 8.1939321

10 − 1.0644557 − 1.0568713 − 1.0644865 − 1.2933656 − 2.8867318 − 1.2934018

100 573.09378 6489.8173 573.09376 991.66928 2058848.1 991.66924

4fδ(u) 1 − 11.979158 − 11.979158 − 1396.2592 − 11.953209 − 11.953209 − 184.04015

10 − 9.9601420 − 9.9600532 − 9.9657878 − 8.7076776 − 8.9358754 − 8.7089717

100 222.16910 787.97600 222.16910 517.76337 52884.458 517.76337

From relations (29, 35–36) one obtains

〈cos2 θ〉 = 1−
1

c
(2J + 1−M)

−
1

16c3
(2J + 1−M)[(2J + 1−M)2 + 1−M2]

+
1

16c4
[
(2J + 1−M)2(5(2J + 1−M)2

+10− 6M2) + (M2 − 1)2
]

+O(1/c5).
(37)

The previously published [9] limiting values of eigenenergy
(in O(1/c)) and squared alignment cosine (in O(1/c2))
are contained in equations (35, 36) respectively, setting

2J = J̃ + M for (J̃ + M) even and 2J = J̃ + M − 1 for

(J̃ +M) odd.

5 Some illustrative results

The availability of the various approximate expressions
displayed in the present work for eigenvalues is exam-
ined by comparison with exact values. Such exact eigen-
values can be obtained in a rather simply way from a
Killingbeck-type procedure [1,12,22,23] used to solve the
coupled pair of differential equations (14, 15) describing
the one-electron two-centre problem as well as the differen-
tial equation (28) corresponding to alignment of molecules
in intense laser fields [9]. Killingbeck’s procedure works
also well to obtain accurate expectation values, other than
eigenvalues, such as the squared alignment cosine.

In Table 4 we present some results for the separation
constant A (see Eqs. (14, 15) and Tab. 1) for three molec-
ular states 1sσ(g), 3dπ(g) and 4fδ(u) of the ions H+

2 and

HeH2+, chosen as examples. For R = 1a0, the approxi-
mate values Aµ deduced from the angular equation (using
exact value of p) are seen to be very good approxima-
tions of the true values A, for the three states considered
here. For increasing values of R (increasing value of p) the

agreement becomes poorer and for R = 100 a0, values of
Aµ are meaningless as approximations of A.

The approximate values Aλ deduced from the radial
equation (using the exact value of p) which are seen to
be meaningless as approximation of A for R = 1a0 (ex-
cept for the 1sσ states) become good approximations with
increasing values of R and reproduce quasi-exactly A for
R = 100 a0. These variations with R (i.e. with p) were
expected but it is interesting to see that, for any value of
R there is always a very good approximation Aµ or Aλ
of the separation constant, i.e. for small values of R, A
can be approximated by Aµ while for large values of R,
A can be approximated by Aλ. This is illustrated in Fig-
ure 1 where are drawn A, Aµ and Aλ for the 3dπg state
of H+

2 . Advantage may be taken of this remark to provide
useful guess values in iterative procedures used for exact
solutions, such as Killingbeck-type methods.

In Table 5 we present some results for the eigenenergy
λ00 of the Schrödinger equation for molecular alignment.
In Figure 2 are drawn the variation with c2 of λ00 and of its
approximations provided by equations (32, 35). Approxi-
mate formulas (Eq. (32)) are seen to provide good approx-
imations of λ00 for small values of c2 (up to c2 ≈ 10) while
formulas (35) approximate very well the exact eigenener-
gies for large values of c2 (from c2 ≈ 4). A same quality
of prediction is observed for the squared alignment cosine
〈cos2 θ〉. From Table 5 it should be noted that when the
expansions (32, 35) are good approximations of λ00, they
display a smooth convergence. This may be used to pro-
vide useful guess values in iterative procedures for exact
solutions.

6 Conclusion

A procedure by which to determine approximate expres-
sions for the eigenvalues and for their derivatives with
respect to some variable of problems described by three-
term recurrence relations, has been proposed. Two appli-
cations have been performed. One concerns the bound and
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Table 5. Convergence of the two expansions, equations (32, 35), for the eigenenergy λ00 of the alignment equation.

c2 1 16 60

λ00 − 0.34860240 − 9.1507934 − 45.545685

Approximate expression

equation (32) I

0 0 0 0

1 − 0.33333333 − 5.3333333 − 20.0

2 − 0.34814815 − 9.1259259 − 73.333333

3 − 0.34861846 − 11.052322 − 174.92063

equation (35) T

1 − 0.25000000 − 9.0625000 − 45.540341

2 − 0.50000000 − 9.0781250 − 45.544508

3 − 0.85937500 − 9.0837402 − 45.545281

4 − 1.5000000 − 9.0862427 − 45.545459

5 − 2.8300781 − 9.0875416 − 45.545507

6 − 5.9414062 − 9.0883012 − 45.545521

〈cos2 θ〉 exact 0.364307 0.735263 0.870516

equation (32) 0.364374

equation (35) 0.747070 0.870536

Fig. 1. Variation with R of separation constant A for the
3dπ(g) state of H+

2 . Full line exact value, dashed line (- - -)
approximate value Aµ and points • approximate values Aλ.

continuum eigenstates for monoelectronic diatomic ions.
Six of the more often used basis sets have been explic-
itly worked out, i.e. the Baber and Hassé, Wilson, Power,
Rankin and Thorson, Hylleraas and Jaffé basis functions.
Useful material such as the recurrence relations and the
asymptotic behaviour of the corresponding dominant and
subdominant solutions not at disposal in the literature to
the best of our knowledge is displayed. For any value of the
internuclear distance R, at least one of the two approxi-
mate formulas proposed predicts very accurate values of
the separation constant A for molecular states of H+

2 and
HeH2+.

Fig. 2. Variation with the interaction parameter c2 of the
eigenvalue λ00 for molecular alignment. Full line exact value,
dashed line (- - -) approximate value from equation (32) and
points • approximate values from equation (35).

The other application has been chosen from the re-
cent literature and concerns the Schrödinger equation for
a linear rotor subject to radiation, describing alignment
of molecules in intense laser fields. Approximate expres-
sions for the eigenenergy and for the squared alignment
cosine have been displayed including the previously pub-
lished limiting values. For any value of the interaction pa-
rameter one of the two approximate formulas proposed
reproduces very well the exact values for both energy and
squared alignment cosine.

It is worth while to note that such approximations can
be useful to initiate iterative processes for exact solving of
corresponding differential equations.
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Appendix: Expressions for the coefficients b5 and b6

b5 =
1

12288

[
− fk+3fk+2fk+1 − 3f2

k+2fk+1 + 21fk+2f
2
k+1 − 9fk+2fk+1fk − 96

(
6σ2

k + 14σk +
33

4

)
fk+2fk+1

− 24f3
k+1 + 24f2

k+1fk + 1152(σk + 1)2f2
k+1 − 24fk+1f

2
k + 9fk+1fkfk−1 − 384(2σk + 1)fk+1fk − 3072(σk + 1)4fk+1

+ 24f3
k − 21f2

kfk−1 − 1152σ2
kf

2
k + 3fkf

2
k−1 + fkfk−1fk−2 + 96

(
6σ2

k − 2σk +
1

4

)
fkfk−1 + 3072σ4

kfk

]
. (A.1)

b6 =
1

12288

[
(5σk + 7)fk+3fk+2fk+1 + 3(5σk + 6)f2

k+2fk+1 − 3(35σk + 39)fk+2f
2
k+1

+ 3(15σk + 16)fk+2fk+1fk + 12(80σ3
k + 280σ2

k+330σk + 131)fk+2fk+1 + 120(σk + 1)f3
k+1

− 24(5σk + 4)f2
k+1fk−1920(σk+1)3f2

k+1 + 24(5σk + 1)fk+1f
2
k − 3(15σk − 1)fk+1fkfk−1

+ 192(10σ2
k + 10σk + 3)fk+1fk + 3072(σk + 1)5fk+1 − 120σkf

3
k + 3(35σk − 4)f2

kfk−1 + 1920σ3
kf

2
k

− 3(5σk − 1)fkf
2
k−1 − (5σk − 2)fkfk−1fk−2 − 12(80σ3

k − 40σ2
k + 10σk − 1)fkfk−1 − 3072σ5

kfk

]
. (A.2)
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B: At. Mol. Opt. Phys. 22, 2427 (1989).

13. A.H. Wilson, Proc. Roy. Soc. Lond. A 118 617, 635 (1928).
14. E.A. Hylleraas, Z. Phys. 71, 739 (1931).
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